
ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2620

Advanced Interrupt Mechanism for Hybrid

Operating System

Prakash S. Prasad
1
, Professor Dr. Akhilesh R. Upadhyay

2

Research Scholar, CSE Department, Bhagwant University, Ajmer, Rajasthan.INDIA
1
.

Director,Sagar Institute of Research,Technology and Science,Bhopal–462 041 (M.P.) INDIA
2

Abstract: Real time performance analysis is critical during the design and integration of embedded software to guarantee

that application time constraints will be met at run time. To select an appropriate operating system for an embedded system

for a specific application, OS services needs to be analyzed. These OS services are identified by parameters to form

Performance Metrics. From five performance parameters of real-time operating system, scheduling latency and interrupt

latency are the fundamental constraints for improving real-time performance of Linux OS. The proper handling of Interrupt

is given in this paper. This paper analyzed the performance metrics in order to select right OS for the specific embedded

application and also suggested the mixed kernel architecture for advantage. Another way to handle interrupt mechanism is

also discussed for Hybrid System.

Keywords: Operating system, real-time system, Hybrid system, Linux kernel, Interrupt Mechanism.

I. INTRODUCTION
COMBINING both a real-time and a time-sharing subsystem,

hybrid operating systems can provide both predictable real-

time task execution and non-real-time services with well-

known interfaces and lots of existing applications. In order

to achieve relatively low development and maintenance

costs, the time-sharing subsystem of a hybrid system is often

based on commodity operating systems, such as Linux[1].

Real-time systems are widely used in the construction of

national defense, aerospace, industrial control and many

other fields. As the most critical characters which may affect

the whole system, real-time character is required to

guarantee the performance of these systems. With the

development of computer technology, electronic information

technology, many systems are controlled by computer

system currently. As the majority of general-purpose

computers are using Microsoft's Windows or Linux which is

open-source as operating system, which are not real- time

operating system, so these systems have not enough real-

time characters. At present, the vast majority of real-time

systems are embedded systems while built through the

embedded processors with embedded operating system. In

this paper, “real-time systems” mentioned in the following

text are embedded systems.

Combining both a real-time and a time-sharing subsystem,

hybrid operating systems can provide both predictable real-

time task execution and non real-time services with well

known interfaces and lots of existing applications. In order

to achieve relatively low development and maintenance cost

the time-sharing subsystem of a hybrid system is based on

commodity operating system such as Linux[1]

ENERGY consumption is an important design concern for

mobile embedded systems that are battery powered and

thermally constrained. Displays have been known as one of

the major power consumers in mobile systems .

Conventional liquid crystal display (LCD) systems provide

very little flexibility for power saving because the LCD

panel consumes almost constant power regardless of the

display content while the external lighting dominates the

system power consumption [3]

Embedded system application is a hot topic in today’s date

& Linux gradually becomes the most important operating

system for embedded applications. Embedded real-time

system must be able to response and deal with system events

within the pre-defined time limitation. In real-time multi-

tasking system, a lot of events and multiple concurrent tasks

are running at the same time. Therefore, to meet the system

response time requirement, we must ensure that each

mission can be achieved within the required time frame [8].

Real-time systems are specific application systems in

general, because specific characteristics could ensure their

real-time characters on a certain extent. Early real-time

systems have no operating system supported. To implement

multi-task management, engineers must program code for

specific practical application. Therefore, these particular

software developments are less inheritance for code reuse,

maintenance and upgrades which brought a lot of trouble.

The emergence of real-time embedded operating system

provides a powerful tool for real-time systems design and

development because of its real-time kernel, multi-task,

scheduling and fast interrupt response mechanism and so on.

mailto:akhileshupadhyay@gmail.com,Director,Sagar

ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2621

Such real-time characteristics can significantly reduce the

workload of developers, improve development efficiency,

and bring a lot of convenience for the maintenance and

upgrading systems.

However, a system that uses real-time operating is not

necessarily a real-time system. Real-time operating system is

just only provide a basis for the real-time system, and the

most essential elements for a real-time system are to meet

the system requirements of task-critical time, which means

the system must response to events in time and complete

tasks within the limited time[7].

II. REAL TIME OPERATING SYSTEM: ITS COMPONENTS

AND CHARACTERISTICS

Real-time operating system is a subtype of operating system.

It has a lot of characteristics which are similar to common

operating system in many respects. It is mainly responsible

for the control and management of variety of hardware

resources to enable the hardware system to become available,

and provides upper level applications with rich system calls.

It schedules execution in a timely manner, manages system

resources and provides a consistent foundation for

developing application code [5].

Components of RTOS

Most of the RTOS kernels consist of following components:

Scheduler - The scheduler is at the heart of every kernel. A

scheduler provides the algorithms needed to determine

which task executes when.

Objects- The most common RTOS kernel objects are tasks,

semaphores and message queues.

Services- Most kernels provide services that help developers

create applications for real time embedded systems. These

services comprise sets of API calls that can be used to

perform operations on kernel objects or can be used in

general to facilitate following services:

Timer Management

Interrupt Handling

Device I/O

Memory Management

Embedded systems are used for various applications. These

applications can be proactive or reactive dependent on the

requirements like interface, scalability, connectivity etc.

Choosing the OS for an embedded system is based on the

analysis of OS itself and the requirements of application.

Characteristics

Its real time characteristic-Response to events in time and

complete tasks within the limited time

The scheduling objective is letting high priority task go first.

The tasks running on real-time operating system should be

certain.

Some data are highly sharing in real-time operating system.

Factors affecting Real-Time Characteristics of Operating

System.

There are varieties of factors impacting a system’s real-time.

Among these factors, operating system and its own factors

play crucial roles, including process management, task

scheduling, context switching time, memory management

mechanism, the time of interrupt handle, and so on.

Scheduling of tasks

It is crucial for the real-time operating system to adapt

preemptive scheduling kernel, which is based on task

priority. The µC/OS-II operating system uses this method to

implement its scheduling. In an operating system with

nonpreemptive scheduling mechanism, must have no strict

real-time characteristic.

Preemptive scheduling provides a good foundation for real-

time system. In order to maximize the efficiency of

scheduling systems, the operating system should run with

certain real-time scheduling algorithm.

There are some common real-time scheduling algorithms,

such as the Liu and Layland Rate-Monotonic (RM)

scheduling algorithm and the earliest deadline priority (EDF)

algorithm. The RM scheduling algorithm is a type of static

scheduling algorithm, in which the priority of tasks are

determined by the length of the cycle of task, and the shorter

cycle of task has a higher priority. The EDF algorithm is one

of the most popular dynamic priority scheduling algorithms

that define priority of tasks according to their deadlines.

Clearly, an excellent task scheduling algorithm can improve

the operating system’s real-time characteristics. However, it

also consumes a certain degree of system resources. Thus,

time complexity of scheduling algorithm, in turn, has an

impact on the real-time characteristic.

The context switching time

In a multi-tasking system, context switch refers to a series

operation that the right of using CPU transferring from one

task which is running to another ready for running one [6].

In preemptive scheduling systems, there are a lot of events

that can cause context switches, such as external interrupt, or

releasing of resource which high priority tasks wait for. The

linkages of tasks in an operating system are achieved by the

process control block (PCB) data structure. When context

switches occurred, the former tasks information was saved to

the corresponding PCB or stack PCB specified. The new

task fetches original information from corresponding PCB.

The time switching consumed depends on the processor

architecture, because different processors need to preserve

ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2622

and restore different number of registers; some processors

have a single special instruction which is able to achieve all

the register’s preserve and restore job; some processors

provide a number of registers group, the context switching

required only need to change the register group pointer [9].

Operating system data structures will also affect the

efficiency of context switch.

The time of kernel prohibiting interrupt

To ensure the atomic of operating to some critical resource,

the operating system kernel has to prohibit all of interrupt

sometimes. Interrupt will break the sequence of instructions,

and may cause damage of data. Prohibiting interrupt always

delay the response of request and context switching. In order

to improve real-time performance of operating system,

noncritical operations can be inserted between the critical

areas. Setting reasonable preemptive points in critical areas

can reduce the prohibition time of interrupt.

Efficiency and treatment methods of interrupt

As the driving force for operating system scheduling,

interrupt provides approaches of interaction between

external events and operating system. The interrupt response

speed is one of the most important ingredients which impact

the real-time performance of system. At the end of each

instruction execution, CPU will detect the status of interrupt.

If there is an interrupt request and the interrupt is not

prohibited, the system will execute a series of interrupt

treatments: pushing values of CPU registers to stacks,

obtaining the interrupt vector and getting the procedures

counter register value, then jumping to the entrance of ISR

and beginning to run, etc. [3]. What have mentioned above

requires some system consumption. For a specific system,

the consumption is identifiable, that is to say: it is possible to

calculate the time delay of interrupt treatment caused by this

part of work.

As interrupt management strategy, allowing interrupt nesting

can further improve the response of high-priority incident’s

real-time, but relatively low-priority interrupt handling will

be suffer negative impact. It should be considered under

certain situation.

Non-emergency interruption may cause delay to important

and urgent tasks, because interrupt handling is executed

before task and thread. In order to reduce the delay, the

handle process should be divided into two parts, just like

Linux divided it into the top half and bottom half. Also

Windows CE’s interrupt handling is divided into two parts:

ISR and IST. They tried to keep ISR as a short program,

while allowing tasks do more work, and make full use of the

task scheduling mechanism

Fig. 1. A typical interrupt request handling procedure in a

hybrid system

Figure shows a typical interrupt request handling procedure

in a hybrid system. Basically, real-time and non-realtime

interrupt requests are passed to the interrupt handling code

through the interrupt request entry. The interrupt handling

code can be separated into two parts, the interrupt

distribution routine and interrupt service routine (ISR). First,

the interrupt distribution routine determines the entry point

for an interrupt request. Next, a specific interrupt service

routine is called, and then the interrupted

task/program/interrupt is resumed or a new task/interrupt is

rescheduled to be executed before exiting from the ISR.

Although the interrupt handling in hybrid systems looks like

that in general-purpose OS, it has to be changed a lot with

the structure shown in Fig. 1, in which real-time and non-

real-time interrupts are passed through the same interrupt

request entry. First, in the interrupt distribution code, in

order to satisfy the predictability of the real-time subsystem,

we need to separate real-time and non-real-time interrupts

since they will be processed differently. Second, we have to

solve the interrupt disabling problem when dealing with

non-real-time interrupts[2].

The interrupt disabling problem is caused as follows: The

time-sharing subsystem of a hybrid system is usually treated

as the task with the lowest priority. With the lowest priority,

the time-sharing subsystem task cannot block realtime

interrupts nor can it prevent itself from being preempted. On

the other hand, in a time-sharing operating system, such as

Linux, interrupt disabling is frequently used in interrupt

handlers, critical sections, and so on. And in most processors,

interrupt disabling is achieved by masking the interrupt

disabling/enabling bit in the Program Status Word (PSW)

register, and all interrupt requests will be disabled if the bit

is set. In hybrid systems, we cannot really set the interrupt

disabling/enabling bit for interrupt disabling from the time-

sharing subsystem task.

Memory management mechanism

Generally, a real-time operating system uses the most

efficient unified physical address space. Every task runs in

the same address space. This management method can avoid

the address space switching caused by the process

scheduling that will occupy a lot of system resources.

ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2623

Because converting virtual address to physical address will

lower the system performance, real-time operating systems

use physical address directly, although it may bring security

and stability problems. One of the most popular embedded

operating systems-Vxworks uses the mechanism.

Real-time operating systems never use virtual memory,

because it is hard to estimate the time of fetching data from

external storage medium. When a page miss occurs, memory

management should swap pages between internal memory

and external memory. This process will suspend current

running task. So the execution of real-time task cannot be

assured.

The race condition among tasks

The tasks of the system may compete for sharing resources.

It will definitely cause some tasks to suspend and wait for

the sharing resource. In preemptive scheduling kernel,

priority inversion is a serious problem caused by race

condition. A low-priority task which occupies critical

resources has no right to implement, while a high-priority

task has to wait a middle-priority task to release CPU to low-

priority task. So the high-priority task is affected seriously

and the task scheduling will become unstable and

unpredictable. The real-time performance of system

deteriorates rapidly. After all, the high-priority task can only

seize the CPU from the low-priority task. It can’t seize the

resources. At this condition, it is necessary to use priority

inheritance and priority ceiling to resolve the problem.

I. Analysis of Linux Kernel’s Real Time Performance

and How it is restricted

It’s well known that an operating system’s real-time

performance is evaluated by the following five technologic

parameters: Deterministic, Preemptive, Context Switching,

Interrupt Latency and Scheduling Latency [1, 2]. Context

Switching is relative with specific CPU and Deterministic is

determined by the remaining three aspects. So in this paper

Linux kernel’s real-time performance is discussed from

Preemptive, Interrupt Latency and Scheduling Latency.

A. Preemptive

In general there are two modes in Linux kernel which are

user state and core state. When a process operates at user

state, preemptive scheduling is possible to happen if there is

no shared data. But at core state the kernel is non-preemptive

[4] and the tasks ready to run must be done in sequence.

When a critical section of code is executed or Preempt

disable command is used, the task cannot be preempted. In

other words Linux kernel’s preemptive performance still

doesn’t meet the need of hard real-time performance.

B. Scheduling Policy

Scheduling latency is the time that it takes for a high priority

task ready to run caused by an event to wait to be done and

is determined by interrupt latency, non-preemptive time and

scheduling algorithm. In general Linux kernel scheduling

algorithm is an O(n) algorithm indicating scheduling time is

relative with the task scale, which is caused by concentrated

computing time slices. Scheduling time is certain

independent of task scale because Active queue and Expired

queue are set so that it is unnecessary to compute time slices

concentrated and scan the whole queue before scheduling

switch. Thus easily resulting in that non-real-time task

blocks real-time one by disabling interrupt.

C. Interrupt Latency

An interrupt has the highest priority and can preempt any

task. It is common to disable interrupt for safety in Linux

kernel process. If lower priority tasks disable interrupt there

will be uncertain latency time for real-time task’s response,

which is not allowed for real-time system. Therefore

Interrupts should be properly handled and tackled for the

scheduling of the Tasks and Handling the Interrupts.

D. Improvement on Linux Kernel Real-Time

performance

It takes long time for Linux kernel to develop and its

performance to increase. However for the standard Linux

kernel its real-time performance is always a problem unable

to be solved completely. It is not because the designers are

not excellent for many top programmers and engineers in the

world take part in developing Linux kernel, but the standard

Linux kernel needs to take into account fairness, balance and

scale compatibility, and many other factors so that real-time

performance has to give in. The real-time performance of

Linux kernel is improved by improving both scheduling

strategy and interrupt latency which block real-time task.

II. Mixed Kernel Architecture

The Mixed kernel is the combination of Monolithic and

Micro Kernel. As the Monolithic kernel is generally

associated with the desktop Operating System and Micro

Kernel is with Embedded or the Real Time Operating

System. So whenever the task is supplied to the Kernel it

will first determine if it is to be submitted to the Monolithic

Kernel or the Micro Kernel, and then accordingly scheduling

strategy will be applied to the tasks so that the execution of

tasks can be delivered at the real time constraints.In this

system some tasks are required to be suspend and wait for

the sharing resource. The real-time and non-realtime

interrupt requests are passed to the interrupt handling code

through the interrupt request entry. The interrupt handling

code can be separated into two parts, the interrupt

distribution routine and interrupt service routine (ISR). First,

the interrupt distribution routine determines the entry point

for an interrupt request. Next, a specific interrupt service

routine is called, and then the interrupted

task/program/interrupt is resumed or a new task/interrupt is

ISSN (Print) : 2319-5940
 ISSN (Online) : 2278-1021

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2624

rescheduled to be executed before exiting from the ISR.

Although the interrupt handling in hybrid systems looks like

that in general-purpose OS, it has to be changed a lot with

the structure shown in Fig. 1, in which real-time and non-

real-time interrupts are passed through the same interrupt

request entry. First, in the interrupt distribution code, in

order to satisfy the predictability of the real-time subsystem,

we need to separate real-time and non-real-time interrupts

since they will be processed differently. Second, we have to

solve the interrupt disabling problem when dealing with

non-real-time interrupts[2].

The interrupt disabling problem is caused as follows: The

time-sharing subsystem of a hybrid system is usually treated

as the task with the lowest priority. With the lowest priority,

the time-sharing subsystem task cannot block realtime

interrupts nor can it prevent itself from being preempted. On

the other hand, in a time-sharing operating system, such as

Linux, interrupt disabling is frequently used in interrupt

handlers, critical sections, and so on. And in most processors,

interrupt disabling is achieved by masking the interrupt

disabling/enabling bit in the Program Status Word (PSW)

register, and all interrupt requests will be disabled if the bit

is set. In hybrid systems, we cannot really set the interrupt

disabling/enabling bit for interrupt disabling from the time-

sharing subsystem task

VI CONCLUSION

The selection of right operating system for a specific

application has a great impact on performance of real- time

system. In the embedded application the improvement of

real-time performance of Linux kernel has far-reaching

significance. The Interrupt Mechanism for hybrid System is

to be dealt with proper care so that the basic cause of Hybrid

system is to be maintained. The complex relationship

between the tasks may cause heavy system consumption on

internal communication between tasks. The Scheduling and

separating the tasks in the beginning will also give us

flexibility to apply different algorithms for different task

queues. Synchronization mechanism between tasks will

decline the real-time performance of system. The Interrupt

should be activated at proper time so that the race condition

among the tasks can be prohibited and the interrupt should

not mask the hard real-time tasks. At last, how to use a real-

time operating system to implement an actual application

system is the key for all embedded system developer.

REFERENCES

[1] Yodaiken and M. Barabanov, “Real-Time Linux,” Proc.Applications
Development and Deployment Conf. (USELINUX), Jan.1997

[2] Miao Liu et.all, “On Improving Real Time Interrupt Latencies of
Hybrid Operating Systems with Two-Level Hardware Interrupts”,IEEE
Transactions On Computers, Vol. 60, No 7, July 2011, pp. 978-991.

[3] Mian Dong and Lin Zhong, “Power Modeling and Optimisation for
OLED Displays”, IEEE Transactions on Computers,Vol. 11, No 9,
September 2012, pp. 1587-1599.

[4] L.I. Bing and L.I. Zhong-wen, “Analysis of Linux Real-time
Mechanism”, Computer Technology and Development, vol. 17(09), Sep.
2007, pp. 41-44.

[5] B. J. Wang, M. S. Li and Z. G. Wang , “Uniprocessor static priority
scheduling with limited priority levels”, Journal of Software, vol. 17(03),
March 2006, pp. 602-610.

[6] S. Andrew, Tanenbaum, S. Albert and Woodhull, “Operating Systems
Design and Implementation”（Third Edition）, Prentice Hall, January 04,2006.

[7] J. S. Xing, J. X. Liu, and Y. J. Wang, “Schedule ability test
performance analysis of rate monotonic algorithm and its extended ones”,
Journal of Computer Research and Development, vol. 42(11), Nov. 2005,
pp. 2025-2032.

[8] Q. Li and C. Yao, “Real-Time Concepts for Embedded Systems”.
CMP Books, 2003.

[9] Tangyin, “Real-Time Operating System Application development
Guide”，China Electric Power Press, July 2002.

[10] Chen Han Fei, “Research of Key Problem about Real-Time Operating
System”, Doctor’s Dissertation of Zhejiang University,2009.

[11] YuZhaoAn, “Research of Real-Time Performance and Software
Reliability based on Embedded Industrial Control System with Windows
CE”, Master’s dissertation of Northwest University,2009.

[12] S. Andrew, Tanenbaum, S. Albert and Woodhull, “Operating
Systems Design and Implementation”(Third Edition ） , Prentice Hall,
January 04, 2006.

BIOGRAPHY

Prakash S. Prasad has published more

than 10 papers in National and

International Conferences. He is Member
Of IEEE, ISTE and IACSIT. He has

completed his bachelors degree in 1997,

and Masters Degree in 2007. He is
currently working as assistant professor at

Priyadarshini college of Engineering and
Head of The Department of Information Technology. He is having 14

Years of Teaching experience and his interests include network security,
Operating System and System Software.

Prof. (Dr.) Akhilesh R. Upadhyay obtained
Ph.D. degree in Electronic Engineering from the

Swami Ramanand Teerth Marathwada

University, Nanded in 2009, M.E. (Hons.) and
B.E. (Hons.) in Electronics Engineering from

S.G.G.S. Institute of Engineering &

Technology, Nanded [M.S.] in year 2004 and
1996 respectively. He is currently working as

Professor EC Dept. and Vice Principal at Sagar

Institute of Research and Technology, Bhopal, India since October 2009.

He has more than 13 years teaching and 3 years of industry experience. He

is Associate Editor of Journal of Engineering, Management &

Pharmaceutical Sciences, Ex-Editor of International Journal of Computing
Science and Communication Technologies and member of Editorial

Boards/Review Committee of various reputed Journals and International

Conferences of various Countries. He has more than 54 research
publications in reputed International/National Journals and Conferences

(e,g, IEEE, ACM, Springer, IJCTEE, JICT). He also authored more than 16

text/reference books on electronics devices, instrumentation and power
electronics for various Universities. He is recognized Ph.D. Supervisor for

various Universities in India and presently guiding 10 Ph.D. scholars. He

visited Malaysia in July 2007 as overseas representative of APIIT and San
Francisco California, U.S.A. in January 2012 for attending International

Conference “Electronic Imaging 2012” to present his latest research work.

